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A lattice kinetic algorithm to simulate three-dimensioi@D) incompressible magnetohydrodynamics is
presented. The fluid is monitored by a distribution function, which obeys a scalar kinetic equation, subject to
an external force due to the imposed magnetic field. Following the work of Odll&@omput. Phys179 95
(2002)], the magnetic field is represented by a different three-component vector distribution function, which
obeys a corresponding vector kinetic equation. Discretization of the 3D phase space is based on a 19-bit
scheme for the hydrodynamic part and on a 7-bit scheme for the magnetic part. Numerical results for magne-
tohydrodynamic(MHD) flow in a rectangular duct with insulating and conducting walls provide excellent
agreement with corresponding analytical solutions. The scheme maintains in all cases tested the MHD con-
straintV-B=0 within machine round-off error.
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I. INTRODUCTION cess for the magnetic field, it can be argued that any conser-
, , ) vative system can be formulated in this way under appropri-
Lattice Boltzmann methodéLBM's) have been imple- e constraingg]. Furthermore, the fluid momentum field is
mented in many areas of fluid flowd]. They have been gimylated via a typical BGK lattice equation. This formula-
proven to be an efficient alternative to classical CFD solversjon contains certain important advantages compared to the
in incompressible low-Reynolds-number flows in complexeayiier multi-speed modek.e., significantly reduced com-
geometries, including porous media and particulateyter memory and independent adjustment of the fluid vis-
suspension multiphase flow&]. They focus on the proper cosity and magnetic diffusivity
time, space, and microscopic particle velocity discretization There are a number of ways to include the effects of the
of the mesoscopic Bhatnager-Gross-Kro@GK) kinetic | grentz force into the MHD formulation. Dellar opted for
equation, in order to provide exact Lagrangian-type sOluyne nheuristic extension of the equilibrium function that would
tions, subject to specific conservation rules that reflect the,q,ce an appropriate term to the second moment of the
macroscopic processes. Then, the corresponding macrgistripution function and thus to the momentum equation. A
scopic behavior is recovered at the long-wavelength limit,,5re systematic and general approach is based oa fhie
The explicit and local nature of the algorithm is amenable tQyj gerivation of the BGK equation with an external accel-
high parallelization. o _ eration term included due to the imposed external potential
_LBM's have been also applied in the field of two- (10_19. Then the Lorentz force can be introduced as a
dimensional(2D) magnetohydrodynamicdHD). The first - intwise force. It is noted that within this formulation the
attempts were considered in the context of a second basgscretized expanded equilibrium retains the same form as in
vector for the discrete particle velocities on an hexagonaj,e hydrodynamic configuration.
lattice [3,4]. Thus, for a lattice Wltm streaming directions, In the present work, we apply the lattice kinetic scheme
NN particle states must be considered and as a result vagjiroquced by Dellar for the treatment of the induction equa-
amounts of memory are required. This model has been simjop, 1o three-dimensional MHD flows. However, we choose
plified by |mplemgnt|ng (_)nly adjacent quxmary veqtors for ¢ implement the more formal approach based on the ex-
each lattice direction, while all other desired properties of thenged Boltzmann equation in order to model the external
model have been retaind8]. This approach has also been | grentz force term. Following this procedure the integrated

extended in an octagonal lattice, due to its superior numerigcheme becomes more flexible and straightforward in its for-
cal stability properties compared to the hexagonal or squarg,jation.

lattices[6,7]. However, despite significant efforts to reduce
the complexity of the lattice MHD system, the applied mul-
tispeed formulation of the momentum and magnetic fields
adds a significant burden on the numerics, suggesting a cum-
bersome extension to 3D geometry.
Recently, a new approach was proposed by Ddir

The magnetic field is represented by a separate vector dist
bution function, which obeys a kinetic BGK-type evolution

equation. Although there is no analogous microscopic pro- G(oW) + V (Pl +ouu)=J X B+ V -(200S) (1)

II. FORMULATION

We start our analysis by noting that the proposed lattice
scheme simulates the incompressible MHD flow equations,
which consist of the momentum equation augmented by the
"orenz force

and the induction equation, which in conservative form, can
*Corresponding author. Electronic address: gbregian@mie.uth.gbe written as
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12 relates to the Lorenz forc&x B. Equation(3) is integrated
8 6 along its characteristic using the trapezoidal r{d4,12,
7 while the unknown forcing term is treated according to the
procedure in[10-123. Note that considering a nonconstant
acceleration during the integration step is appropriate due to
8 —— = the nature of the Lorenz force. Thus, the discrete distribution
: T function f;(x, & ,t) satisfies the evolution equation

9 filx + &ot, & t+ ) - f(x,§,1)

@ E = Ak £, U+ )~ 100+ £ EL+ )
:

- At 5.0 - 1O, £,0]
27

_ + %a(x +&oL & t+ o) - Ve f(x+ &t &, t+ d ot

2 ’ " %a(xafi,t) Ve f(x, & et )

where &t denotes the time step=\/dt is the dimensionless
relaxation time,

(&-u) | (&-v)? UZ]
O = o SitE s 2
f] le{l + + 2 "ol (5)

(b)

FIG. 1. Discrete velocity lattice for thé€a) hydrodynamic
(3DQ19 and(b) magnetic(3DM7) fields.
and

4B+ V - (uB-Bu)=7V°B. 2 (& -u)

62

a-vgn:—%§ﬁﬁ—uy+

§i} -(IXB). (6

Here,p is the densityy andB denote the velocity and mag-
netic fields, respectivel\s represents the strain rate tensbr,
is the current density, and and 7 are the kinetic viscosity In the present work, weighte; and discrete velocitie;
and magnetic resistivity. In addition, the solenoidal con-reflect the 3DQ19 configuratiofiFig. 1(a)], arguably the
strains ofV.u=0, andV-B=0 are imposed. most efficient lattice for 3D computationfl4], with »
At the mesoscale level, the flow can be monitored througt T66t. Setting the lattice speek 1, for computational effi-
the time and space evolution of a distribution functionciency, we postulat@=c;=1/3. Thehydrodynamic macro-
f(x,£,1) which follows the BGK kinetic equation including SCOpic quantities are given @&=31, f;, ou=3{% &f;.

the external forcing term, Next, fO”OWing the work of Dellar[8], we use a three-
component vector distribution functiag(x, £,t), the zeroth
af+&- Vi+a-Vif=—(1N)(f -1, 3 moment of which gives the magnetic field vec®r fgd{.

The evolution ofg obeys a kinetic equation of the form
where& anda stand as the particle velocity and acceleration,
respectively,\ is the relaxation time, and®® is the local 8g+¢ - Vg=—(1N)g-99), (7)
Maxwellian [12,13. The acceleration is due to an imposed

mean external potential and, under the MHD formulationwhereg'” is the corresponding equilibrium distribution func-
tion and\ # A, denotes a relaxation time, providing a second

degree of freedom in the model. Equatiof) is integrated
using the trapesoidal rule, yielding, in its discrete form, the
evolution equation

Side Wall
x u(y.z) gj(x + ot g, t+ o) — gj(x,g.1)
SO || @

artmann Wal

ot
= 5, G0 GAGE+ )~ g0+ Gt t+ 3]

z

B, I ~ 5 (G40 = g7 (x.,0], ®

FIG. 2. Configuration of duct flow under an initial magnetic Where g;(x,¢;,t) is the discrete-vector-valued distribution,
field B=(0,By,0). Tm=Am/ &, and the discrete equilibrium takes the form
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FIG. 3. Velocity profiles and induced magnetic field for various  F|G, 4. Velocity profiles and induced magnetic field for various
Ha numbers for the case of insulating side and Hartmann wallsHa numbers for the case of perfectly conducting Hartmann walls
Comparison between analyticgbolid line) and computational ang insulating side walls. Comparison between analytisalid
(X) results. line) and computationalx) results.

gi7 = Wi[Bg+ 6¢iu(u,Bs ~ B,up)], (9 adequate. The corresponding weights fg=2 and W, =3
forj=1, 2, 3, 4, 5, 6 whil&g,,=1/4. Themagnetic resistivity

with o and 8 standing for the three components of the vectoris given asn=r,6,6t. This lattice configuration, which we
quantities andx# 8. The values off,, W;, and{; depend call 3DM7 to distinguish it from the hydrodynamic one,
upon the choice of the implemented lattice scheme for theoupled with the 3DQ19 scheme for momentum space main-
magnetic field, which is not necessarily the same as the ontins high accuracy in all 3D MHD cases tested.
for the hydrodynamic flow. The constrains frare >; W, Equationg4) and(8) are implicit but one can circumvent
=1 andX; Wi{j.Lip=0mdap Furthermore, the lattice has to that by introducing11]
retain a symmetry up to third order; thus; W;{;,=0 and
2 Wi{julipli,=0 are imposed. Consequently, the required _ St
number of discrete velocity vectors for accurate simulations fi(x,t) = fi(x,t) + *[f x,t) = £0(x,0)] - S8 Vfi(x,1)
of the magnetic part of the scheme is significantly reduced.
The macroscopic quantity of interest is givenBy X, g;. In (10)
the present work we introduce a 7-bit lattice configuration
for the magnetic field, shown in Fig(l), which proves to be and
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IIl. RESULTS

The numerical benchmarking of the scheme is accom-
plished by solving a fully developed MHD flow in a rectan-
Then the discretized evolution lattice kinetic MHD schemegular duct subject to various boundary conditiaisy. 2).
becomes Initially, the magnetic fieldB is aligned with they axes.
Although the flow is pseudo-2Du=(u,(y,2),0,0], we ana-
lyzed fully 3D flow with periodic conditions in the stream-
wise direction. Both Dirichlet- and Newman-type boundary
conditions have been considered. This is one of the few
problems of 3D MHD flows where an analytical solution
exists[15]. Our numerical results match the corresponding
analytical ones with excellent agreement.

Figure 3 depicts the streamwise velocity profiles in yhe
and z directions for various Hartman¢Ha) numbers, along
the corresponding center lines of the duct. In addition, the
[g_j(x,t) —gj(o)(x,t)], induced magnetic field componeBi(y,0) is shown. Note

that B,(0,2) is identically equal to zero for the above con-
(13 figuration. Both the side and Hartmann walls are taken to be
perfectly insulating. The corresponding results for perfectly
where the equilibrium distributiorTé0> andg}o) are given by conducting Hartmann walls and insulating side walls are
Egs. (5) and (9), respectively, and the forcing term can be shown in Fig. 4. Although the MHD constrailt:-B=0 is not
computed by Eq(6), while the macroscopic quantities of explicitly imposed, the implemented lattice kinetic scheme
interest are given by fulfills this requirement within machine round-off error. The
overall performance of the algorithm and the excellent agree-
ment with analytical results suggest that the present mesos-
cale kinetic-type approach provides a promising tool in order
to tackle complex MHD flows such as plasma and liquid
(14)  metal flows.

— &t
g b =g+ -—[gix,n -g%x,n].  (11)
27

fix+ &att+ o) = fi(x,t) - [fix,0) - £ 20, 0)]

_a
(7+ 0.56t)

.
trrosn® Yafikod (12

and

— — ot
gj(x+ gjét,t+ o) = gj(x,t) - m

N &t
ou=> &fi+(IxB),
i=1 2

N M
o=, B=>g.
i=1 j=1
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